Certain neurons in the brainstem control sickness behaviours not directly caused by a pathogen, such as tiredness and lack of appetite.
Infections are often associated with symptoms not directly tied to a specific pathogen. Scientists have long been interested in understanding where these so-called ‘sickness behaviours’ are ultimately controlled, as that information could shed light on the brain’s influence on the immune system and potentially lead to new treatments to speed recovery from myriad illnesses. Now, research in mice published earlier this month in Nature, (the foremost international weekly scientific journal in the world), has tracked much of that control to a set of neurons deep in the brainstem.
“I think it’s really a significant advance,” says Keith Kelley, a professor emeritus of immune-physiology at the University of Illinois and former long-time editor-in-chief of the journal, Brain, Behaviour and Immunity, who was not involved in the work. “It actually shows a population of cells in the brainstem which are responsible for linking what happens in the body to what goes on in the brain.”
The neurons that make us feel sick
The human body is constantly trying to maintain a kind of equilibrium, controlling things such as body temperature, feeling hungry and how much we sleep. This careful balance, known as homeostasis, is how we manage to stay alive and healthy in the world. “Usually, these things are really well controlled, and our bodies really prioritise that,” says study co-author, Anoj Ilanges, a biologist at the Janelia Research Campus in Ashburn, Virginia who conducted the study while at The Rockefeller University in New York.
This balance changes when we get sick, triggering a constellation of symptoms and physiological changes collectively referred to as sickness behaviours which can aid towards recovery.
Previous research suggested that at least some of the signals leading to sickness behaviours originate in the brainstem, but did not pinpoint exactly where within the structure. Ilanges and his colleagues decided to investigate.
First, they exposed laboratory mice to lipopolysaccharide (LPS), a toxin consisting of pieces of dead bacteria and known to elicit an immune reaction similar to that triggered by live bacteria. As expected, LPS caused the animals to act sick. They became lethargic and lost their appetites, even though they were not infected by a pathogen. This effect was strong, according to study co-author and Rockefeller University molecular biologist, Jeff Friedman. LPS-exposed mice even refused food after being subjected to a long fast that normally would have pushed them to eat.
Looking for FOS
Scientists then examined neuronal activity by searching for a protein called FOS in the brains of mice euthanised after LPS injection. FOS is involved in long-term changes in the brain and is often expressed after neurons fire and therefore can act as a proxy for neuronal activity. Higher concentrations of FOS indicated a burst of activity in two areas – the nucleus of the solitary tract (NTS) and the area postrema (AP), which sit side-by-side in the brainstem.
However, to determine if neurons in these areas are truly responsible for sickness behaviours, scientists needed to activate them without using LPS as the toxin is known to cause other changes in the body and brain.
Next they injected a virus that delivers a molecular switch sensitive to the antipsychotic drug clozapine directly into the NTS-AP region of the brainstems of special mice. These mice had been genetically engineered so that, when exposed to the anticancer drug tamoxifen, actively-firing neurons—and only actively-firing neurons—would integrate this switch into the FOS-encoding gene. This meant that if the mice were later exposed to clozapine, the neurons that happened to be firing in the NTS-AP region where the virus was injected while the mice received a priming dose of tamoxifen, would once again become active. This, in essence, gave the researchers a way to take a snapshot of neural activity as well as a way to recreate that snapshot later.
The researchers then injected the engineered mice with LPS as well as with the switch-priming, snapshot-taking tamoxifen. After a few weeks of recovery, the researchers gave the mice an injection of clozapine and, once again, NTS-AP neurons produced FOS and the mice displayed sickness behaviours, even without any LPS in their system. To the team, this confirmed that neurons in the NTS-AP region contribute to feeling ill. Further experiments using single-nucleus RNA sequencing narrowed the specificity of LPS-activated neurons down even further to ones in those regions that also express a protein called ADCYAP1.
“There’s a lot going on, in terms of the immune system communicating with the brain and the brain controlling our physiology during infection. And I think this is only the beginning of really exploring this axis” – Anoj Ilanges, Janelia Research Campus
Ilanges’ team also found that inhibiting ADCYAP1-expressing neurons reduced sickness behaviours in response to LPS injection, though it did not completely eliminate them.
Patricia C. Lopes, a biologist at Chapman University in California who studies sickness behaviours, but didn’t work on the study, pointed out that NTS-AP neurons may not be the only neurons in the brain contributing to sickness behaviours. In June, a different group of scientists, also publishing in Nature, identified neurons located in the hypothalamus that act as a kind of control hub to coordinate fever, loss of appetite and warmth-seeking behaviour. Both the brainstem and the hypothalamus had been previously identified as important to sickness behaviours, but being able to identify the cell populations is remarkable, she says. “The specificity to which they’re getting is unprecedented.”
Sex differences
Lopes did note an interesting wrinkle in both papers. All the animals used were male. This is not uncommon in mouse studies, as female mice show large fluctuations in body temperature related to oestrus (a potentially confounding factor scientists may want to avoid), but it means that any potential differences due to sex are unknown.
Ilanges’ team was not able to investigate which specific body signals these neurons were responding to, though they noted that the NTS is known to relay signals from the vagus nerve—an important communication line between the brain and internal organs—while the AP is known to sense humoral signals, such as proteins released into the blood stream. They were also not able to investigate whether the neurons were active during viral or other non-bacterial infections.
Nevertheless, they hope that the data and methods they used could be used by others to continue to explore how the brain and immune system interact. .
Ilanges says that figuring out how the brain controls sickness behaviours could also open the door to potential methods for tweaking these mechanisms. For example, one could imagine a drug designed to help chronically ill people regain their appetites.